Primal-Dual Interior Methods for Nonconvex Nonlinear Programming

نویسندگان

  • Anders Forsgren
  • Philip E. Gill
چکیده

Recently, infeasibility issues in interior methods for nonconvex nonlinear programming have been studied. In particular, it has been shown how many line-search interior methods may converge to an infeasible point which is on the boundary of the feasible region with respect to the inequality constraints. The convergence is such that the search direction does not tend to zero, but the step length does. Such “false” convergence may occur even for a fixed value of the barrier parameter. In this paper, two commonly used reformulations for handling infeasibility are studied. It is shown that when the above-mentioned convergence difficulty occurs, the multiplier search directions diverge along a direction that can be characterized in terms of the gradients of the equality constraints and the asymptotically active inequality constraints. Further, for a penalty-barrier interior method, similar convergence difficulties along with diverging multiplier search directions can occur when the penalty and barrier parameters are driven to zero. The divergence is motivated through an analysis of the penalty-barrier trajectory. Further, the direction of divergence is characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Primal-Dual Exterior Point Method for Nonlinear Optimization

In this paper, primal-dual methods for general nonconvex nonlinear optimization problems are considered. The proposed methods are exterior point type methods that permit primal variables to violate inequality constraints during the iterations. The methods are based on the exact penalty type transformation of inequality constraints and use a smooth approximation of the problem to form primal-dua...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods

The paper extends prior work by the authors on LOQO, an interior point algorithm for nonconvex nonlinear programming. The specific topics covered include primal versus dual orderings and higher order methods, which attempt to use each factorization of the Hessian matrix more than once to improve computational efficiency. Results show that unlike linear and convex quadratic programming, higher o...

متن کامل

ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming

 Abstract  We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...

متن کامل

Interior-point Methods for Nonconvex Nonlinear Programming: Primal-dual Methods and Cubic Regularization

In this paper, we present a primal-dual interior-point method for solving nonlinear programming problems. It employs a Levenberg-Marquardt (LM) perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the LM perturbation is equivalent to replacing the Newton step by a cubic regularization ste...

متن کامل

Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts

In this paper, we investigate the use of an exact primal-dual penalty approach within the framework of an interior-point method for nonconvex nonlinear programming. This approach provides regularization and relaxation, which can aid in solving ill-behaved problems and in warmstarting the algorithm. We present details of our implementation within the loqo algorithm and provide extensive numerica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998